

Prueba de Acceso a la Universidad de Extremadura Curso 2012-13

Asignatura: QUÍMICA Tiempo máximo de la prueba: 1h.30 min.

Opción A

1) Escribir las configuraciones electrónicas de los elementos oxígeno, magnesio, escandio y hierro y las de los iones más frecuentes de cada uno de los elementos anteriores.

Números atómicos: O=8; Mg=12; Sc=21; Fe=26.

Puntuación máxima: 2 puntos

2) La solubilidad del bromuro de plata (AgBr) en agua, a 25 °C, es 1,4·10⁻⁴ g·L⁻¹. Determinar: a) La constante del producto de solubilidad (K_{PS}) del bromuro de plata a esta temperatura; b) La solubilidad (en g·L⁻¹) del bromuro de plata en presencia de una disolución de bromuro potásico (KBr) de concentración 1,5 mol·L⁻¹. *Masas atómicas (u): Br=80,0; Ag=107,9*.

Puntuación máxima por apartado: 1 punto

- 3) a) Se dispone de 100 mL de una disolución de HNO₃ que contiene 0,3 g·mL⁻¹. Se desea transformarla en otra de concentración 0,1 g·mL⁻¹. ¿Qué volumen de agua habrá que añadir?
 - **b)** ¿Cuántos átomos de oxígeno hay en el HNO₃ contenido en los 100 mL de la disolución inicial (de 0,3 g·mL⁻¹)?. Masas atómicas (u): H=1,0; N=14,0; O=16,0. $N_A=6,022\cdot10^{23}$.

Puntuación máxima por apartado: 1 punto

- 4) A 375 K, para la reacción: $SO_2Cl_{2(g)} = SO_{2(g)} + Cl_{2(g)}$ la constante de equilibrio K_p vale 2,4 cuando las presiones están expresadas en atm. En una vasija de 2 L de capacidad se introducen 6,75 g de $SO_2Cl_{2(g)}$ y se calientan hasta 375 K.
 - a) ¿Cuál será la presión inicial en la vasija antes de la disociación de SO₂Cl_{2(g)}?
 - b) ¿Cuáles serán las presiones parciales de cada una de las especies cuando se alcanza el equilibrio? Masas atómicas (u): O=16,0; S=32,0; Cl=35,5. R = 0,082 atm·L·K¹·mol¹.

Puntuación máxima por apartado: 1 punto

- a) Formular o nombrar, según proceda, los siguientes compuestos orgánicos: 1) CH₃CH₂COOH;
 2) pentan-2-ona; 3) dietil-éter (etoxietano); 4) CICH=CHCI; 5) CH₃-CH₂-CHOH-CH₃;
 - b) ¿Qué producto se obtiene en la oxidación de un alcohol secundario?. Proponer un ejemplo.

Puntuación máxima por apartado: 1 punto

Prueba de Acceso a la Universidad de Extremadura Curso 2012-13

Asignatura: QUÍMICA

Tiempo máximo de la prueba: 1h.30 min.

Opción B

- 1) a) Razonar qué hibridación presenta el átomo de Oxígeno (Z=8) en la molécula de agua.
 - b) Explicar la geometría y polaridad de la molécula de agua.

Puntuación máxima por apartado: 1 punto

2) ¿Qué se entiende por isomería? Para cada tipo de isomería conocido proponer un ejemplo aclaratorio.

Puntuación máxima: 2 puntos

3) Se diluyen 50 mL de ácido acético (CH₃-COOH) 0,4 M añadiendo agua hasta obtener 500 mL de disolución. Para la disolución resultante, calcular: a) Molaridad de esta disolución; b) pH; c) grado de ionización en el equilibrio. $K_a = 1.8 \cdot 10^{-5}$.

Puntuación máxima por apartado: a) 0,5 puntos; b) y c) 0,75 puntos cada uno

- **4)** Conociendo las entalpías estándar de formación de $C_4H_{10(g)}$ (butano), $CO_{2(g)}$ (dióxido de carbono) y $H_2O_{(l)}$ (agua) son, respectivamente, -126,15; -393,51 y -285,83 kJ·mol⁻¹. Calcular:
 - a) Entalpía de combustión del butano; b) ¿Qué cantidad de calor (en kJ) suministrará una bombona conteniendo 3 kg de butano? y c) Determinar el volumen de oxígeno, medido en condiciones normales, que se consumirá en la combustión de todo el butano contenido en la bombona.

Masas atómicas (u): H=1,0; C=12,0. R=0,082 atm·L· K^1 ·mo I^1 .

Puntuación máxima por apartado: a) y c) 0,75 puntos cada uno; b) 0,5 puntos;

5) En un recipiente de 10 L de volumen se introducen 2 mol de un compuesto A y 1 mol de un compuesto B.

Se calienta el recipiente a 300 °C y se establece el equilibrio:

 $A_{(q)} + 3 B_{(q)} = 2 C_{(q)}$

Cuando se alcanza el equilibrio, el número de moles de B y C es el mismo. Calcular:

a) Los valores de K_c y K_p y b) La presión parcial de cada gas.

 $R = 0.082 \text{ atm} \cdot L \cdot K^1 \cdot mo\Gamma^1$.

Puntuación máxima por apartado: 1 punto